miR-2478 inhibits TGFβ1 expression by targeting the transcriptional activation region downstream of the TGFβ1 promoter in dairy goats

نویسندگان

  • Zhuanjian Li
  • Xianyong Lan
  • Ruili Han
  • Jing Wang
  • Yongzhen Huang
  • Jiajie Sun
  • Wenjiao Guo
  • Hong Chen
چکیده

In a previous study, miR-2478 was demonstrated to be up-regulated in dairy goat mammary glands during peak lactation compared with the dry period. However, the detailed mechanisms by which miR-2478 regulates physiological lactation and mammary gland development in dairy goats remain unclear. In this study, we used bioinformatics analysis and homologous cloning to predict the target genes of miR-2478 and selected INSR, FBXO11, TGFβ1 and ING4 as candidate target genes of miR-2478. Subsequently, by targeting the 5'UTR of the TGFβ1 gene, we verified that miR-2478 significantly inhibited TGFβ1 transcription and the Pearson's correlation coefficient between miR-2478 expression and TGFβ1 expression was -0.98. Furthermore, we identified the potential promoter and transcription factor binding regions of TGFβ1 and analyzed the potential mechanisms of interaction between miR-2478 and TGFβ1. Dual-luciferase reporter assays revealed that two regions, spanning from -904 to -690 bp and from -79 to +197 bp, were transcription factor binding regions of TGFβ1. Interesting, the miR-2478 binding sequence was determined to span from +123 to +142 bp in the TGFβ1 gene promoter. Thus, our results have demonstrated that miR-2478 binds to the core region of the TGFβ1 promoter and that it affects goat mammary gland development by inhibiting TGFβ1 transcription.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MicroRNA-29 mediates TGFβ1-induced extracellular matrix synthesis by targeting wnt/β-catenin pathway in human orbital fibroblasts.

PURPOSE Transforming growth factor β1 (TGFβ1) is very important in the synthesis and degradation of extracellular matrix (ECM) and also in the mediation of human orbital fibroblasts (OFs) proliferation. MicroRNA-29 (MiR-29) plays an important role in this process. In the present study, the effects of TGFβ1 on the expression of miR-29 and whether miR-29 is involved in pro-survival signaling path...

متن کامل

Amplification of TGFβ Induced ITGB6 Gene Transcription May Promote Pulmonary Fibrosis

Idiopathic pulmonary fibrosis (IPF) is a devastating, progressive disease with poor survival rates and limited treatment options. Upregulation of αvβ6 integrins within the alveolar epithelial cells is a characteristic feature of IPF and correlates with poor patient survival. The pro-fibrotic cytokine TGFβ1 can upregulate αvβ6 integrin expression but the molecular mechanisms driving this effect ...

متن کامل

Transforming Growth Factor β1/Smad4 Signaling Affects Osteoclast Differentiation via Regulation of miR-155 Expression

Transforming growth factor β1 (TGFβ1)/Smad4 signaling plays a pivotal role in maintenance of the dynamic balance between bone formation and resorption. The microRNA miR-155 has been reported to exert a significant role in the differentiation of macrophage and dendritic cells. The goal of this study was to determine whether miR-155 regulates osteoclast differentiation through TGFβ1/Smad4 signali...

متن کامل

TGFβ1 Controls PPARγ Expression, Transcriptional Potential, and Activity, in Part, through Smad3 Signaling in Murine Lung Fibroblasts

Transforming growth factor β1 (TGFβ1) promotes fibrosis by, among other mechanisms, activating quiescent fibroblasts into myofibroblasts and increasing the expression of extracellular matrices. Recent work suggests that peroxisome proliferator-activated receptor γ (PPARγ) is a negative regulator of TGFβ1-induced fibrotic events. We, however, hypothesized that antifibrotic pathways mediated by P...

متن کامل

miR-221 facilitates the TGFbeta1-induced epithelial-mesenchymal transition in human bladder cancer cells by targeting STMN1

BACKGROUND Distant metastasis is the major cause of cancer-related death, and epithelial-to-mesenchymal transition (EMT) has a critical role in this process. Accumulating evidence indicates that EMT can be regulated by microRNAs (miRNAs). miR-221, as oncogenes in several human cancers, was significantly up-regulated in bladder cancers. However, the role of miR-221 in the progression of bladder ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017